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Water waves of finite amplitude on a sloping beach 

By G. F. CARRIER and H. P. GREENSPAN 
Pierre Hall, Harvard Uriversity 

(Received 2 December 1957) 

SUMMARY 
I n  this paper, we investigate the behaviour of a wave as it 

climbs a sloping beach. Explicit solutions of the equations of 
the non-linear inviscid shallow-water theory are obtained for 
several physically interesting wave-forms. In particular it is 
shown that waves can climb a sloping beach without breaking. 
Formulae for the motions of the instantaneous shoreline as well 
as the time histories of specific wave-forms are presented. 

1. INTRODUCTION 
The behaviour of waves on sloping beaches has received intensive study 

by many authors during the past sixty years. These investigations, for the 
most part, have been confined to studies of linearized problems which are 
based on assumptions that are invalid in the neighbourhood of the coastline. 
With the results of these linear theories as a basis, it has been stated-that 
progressing waves eventually break on a sloping beach. 

In this paper, we present an analysis based on the non-linear shallow- 
water theory. Explicit solutions are obtained for a number of important 
cases and, in particular, it is shown that there are waves that climb a sloping 
beach without breaking. The initial shape and particle velocity distribution 
determine whether or not a given wave will break, and no simple criterion 
for the occurrence of breaking has been found. 

2. GENERAL ANALYSIS 

The conservation equations of mass and momentum of the non-linear 
shallow-water theory are 

[vf(r18+h")ls+ = -.I;, (2.1) 
(2.2) v; + v y "  = -m$, 

where v8 is the horizontal velocity and the other symbols are defined in 
figure 1 ; the asterisks denote dimensional quantities. A complete 
development of the non-linear shallow-water theory can be found in Stoker 
(1948). 

It is convenient to introduce the following dimensionless quantities : 
v = v*/vo, rl = ~ * / c l Z o ,  x = x"/Zo, t = t*/T, c2 = (h" + r l * ) / d o .  In these 
definitions, T = (Z,,/ag) and vo = (gZna)ll2. The characteristic length Zn 

can be specified when a specific problem is adopted for study ; the depth 

P.Y. G 

is assumed to be of uniform slope, h" = - w", 
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With thcsc substitutions, ccluations (2.1) and (2.2) becoillc 

(2.3 1 
(2.4) 

2”i + VV, f ?la: = 0, 

“LJ(rl - 41.1. + rlt = 0. 
These hyperbolic equations can be rewritten in a form in which the 
characteristic variables a, p play the role of the independent variables and 
21, c, x and t play the role of the unknown functions of a,  p. The four 
equations which arise when the classical transformation is made (the 
details are given in Stoker (1948)) are 

xg-(v+c)tg = 0, x,-(v-c)t, = 0, (2.51, (2.6) 
Vg + 2cg + t g  = 0, (2.71, (2.8) v, - 2c, + t, = 0. 

Equations (2.7) and (2.8) can be integrated explicitly to obtain 

v+2c+t = a, 7’--22c+t = - p .  (2.9), (2.10) 

Figure 1. Definition sketch. The fluid has a sloping fixed boundary and a free surface 
at height 7% above its undisturbed level. 

Herr, the ‘constants of integration’ have been chosen in the interest of 
algebraic simplicity in what follows. From (2.9) and (2.10) we obtain 

v-t-t = ( a - p ) / 2  = h/2, 

c = (rY.+P)/4 = u/4; 

(2.11) 

(2.12) 

and these define A and (T. 

independent variables, so that (2.5) and (2.6) become 
We now adopt h and u as our final pair of 

x, - Z i t ,  + rt, = 0, (2.13) 

N A + c t , - 2 ~ t a  = 0. (2.14) 

The elimination of x results in the linear second-order equation for t 

‘T(t,,-tton)-3t, = 0 ;  (2.15) 

and, since a+ t = h/2, v must also satisfy (2.15). I n  fact, it is readily verified 
by reference to equations (2.11) to (2.14) that if we introduce the ‘ potential ’ 
$(.,A) so that 

7.1 = u-’+,(u,h), (2.16) 
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then 
x = 4J4 - ( ~ ~ 1 1 6  - v2/2, (2.17) 
q = c2 + x = (bJ4 - v2/2, (2.18) 
t = h/2-v, (2.19) 

and 
(&Ju - u(bnn = 0. (2.20) 

Two major simplifications have been obtained. The  non-linear set 
of equations (2.5) through (2.8) have been reduced to a linear equation 
for v or (b and the free boundary (the instantaneous shoreline c = 0, which 
moves as a wave climbs a beach) is now the fixed line (T = 0 in the (0, A)-plane. 

The  choice of a function (b(a,X) which satisfies equation (2.20) defines 
7, v, x, t in terms of the parametric coordinates u, A. I n  particular, if the 
Jacobian a(x, t)/a(u, A) never vanishes in (T > 0, the implicitly defined 
solutions ~ ( x ,  t )  and v(x, t )  are single-valued, and such solutions represent 
waves which do not break. If the foregoing Jacobian does vanish in u > 0, 
the wave must break. However, we confine our attention in this paper 
to those forms of 4 for which breaking does not occur. 

A particularly simple solution of these equations is given by 

4 = AJ,(wa)cos(wA- #), (2.21) 

where J ,  is the usual notation for a Bessel function. No loss in generality 
ensues when the phase lag i,b is taken to be zero or when w is put equal 
to unity, so that 

r$ = AJ,(u)cosX. 

The  Jacobian J = a(x,t)/a(u,A) vanishes nowhere in u > 0 when 
A < 1 and the mapping is valid in u 2 0. The  physical phenomenon 
whose description is implied by equation (2.21) is that which occurs when 
a wave of unit frequency in the dimensionless time variable travels 
shoreward from the region of large x and is reflected, so that a wave, again 
of unit frequency, travels out to sea. The  reflection coefficient is unity. 
The  phenomenon is periodic in the time variable and the wave shape 
far at sea is like J0(42/jxl), but it is considerably distorted near the shore. 
In  particular, the penetration of the wave (the value of x at which the depth 
is zero) is given by equation (2.17) when u = 0:  i.e. x(h, 0) = 4,/4-u2/2, 
so the maximum penetration is A/4. When A > 1, J vanishes on some 
curve in u > 0, and the solution must be modified so that a bore is included 
in the prediction. The  analysis of that problem is now being studied, 
but will not be discussed here. The  wave shape is shown in figures 2 and 3,  
for the extreme positions corresponding to A = 55-12 and A = 3 ~ 1 2  both for 
A = 1 and A = a. I n  the limit as A + 0, J,(u) becomes Jn(42/1x1), the 
linearized solution, and no graph should be needed. 

We now consider problems in which a mound of water is released: 
that is, we specify a wave shape ~ ( x ,  0)  with ~[x, 0) = 0 everywhere. Since 
v + t  = X/2, the condition that v = 0 when t = 0 implies that X = 0 for 
t = 0. 0, Equation (2.15) for a must be solved in the region (T >, 0, X 

G 2  
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with the initial conditions that v = 0 and vA is specified on X = 0, and the 
boundary condition that v is to be finite on u = 0. 

The derivative v, can be determined from the prescribed initial wave 
height by first solving the equation 

[q(x, 0) - XI42 = c(x, 0) = *L7 

for x as a function of u, and then using equation (2.13) to show that on h = 0 
x, = -cct,. 

.-sQ”$ .I n 

_c_ 

I I I I I I 
-1.2 -1.0 -.% 

Figure 2. Free surface geometry for periodic motion according to equation (2.21 ) 
for A = 1 at : E, point of maximum penetration, h = 7r/2; B, h = 3nj2; 
C, D, intermediate times. 

I I I I I I I 
-I 2 -I 0 - a  

Figure 3. Free surface for periodic motion according to equation (2.21) for A = h 
at: E, h = ~ 1 2 ;  B, h = 3~12;  C, D, intermediate times. 

Therefore, for X = 0, 

An entirely equivalent boundary-value problem can be formulated for the 
potential 9. 

The solution of the boundary-value problem for the particle velocity v 
is easily obtained by transform techniques. Let 

2lA = ~; - t, = 4 + 4a’x, = f(u). 
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then equation (2.15) becomes 

Let x = su and p = zz); then 

uEao+3z),-s2ad = -uf(a). 

P 2 2  (zp’)’ - - - z p  = - - f (z /s) ,  
x S2 
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(2.22) 

(2.23) 

and if we now use a Hankel transform 

wc obtain after further manipulations 

Upon setting 6 = ST and computing the inverse transforms, there results 
m m 

v = 1 a1J,(~o)sin ~h d7 1 uxJ1(7a,)f(q,) do,, (2.24) 
0 0 

or, in terms of the potential, 

These results can also be obtained by the superposition of standing 
By the waves. 

principle of superposition, 
The function u-’J,(ka)sinkh is a solution of (2.21). 

ZI = 1 A(k)u-lJl(Ku)sinkX dk 

is also a solution. The function A(K) is determined from the boundary 
condition v A  =f(a) on h = 0;  the condition that et = 0 on A = 0 is implicitly 
satisfied. Further reduction of these general expressions leaving f(a) 
unspecified does not simplify the task of evaluating the final integrals. 
Instead, we select functions f(a) which will both simplify the final integrals 
and correspond to physically interesting initial wave shapes. 

W 

0 

3. SOME INITIAL VALUE PROBLEMS 

In this section we consider a number of interesting examples of wave 
propagation problems in which the motion starts from rest at time zero. 
As a first example, let a one-parameter family of wave-forms at t = 0 be 
given bv 

f -  (3.2) 
a5 1 a 2  5 a3 

16 [ x=--+$-E 1 - -  
2 (a2 + u2)3/2 2 (a2 + u2)512 ’ 

where a = 1*5(1 +0.9~)]’~.  These waves, shown in figure 4 for two values 
of E, all have maximum heights equal to E ,  all have heights 0 . 9 ~  at x = - 1, 
and all have zero slopes at the shoreline. These shapes correspond to the 
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physical problem in which the water level at the coastline is depressed, thc 
fluid held motionless and then released. The quantity f (o)  is found to 
equal 

and for this function it can be shown that 

(3 .3)  

I/€ 

1.0 

.6 

.2 u 
-1.4 -1.2 
L 
1.0 

1 I I 1 I I I 
X -. 2 -.4 -. h -.8 

Figure 4. Initial wave shapes given by equations (3.1) and (3.2) for E +  0 and 
€ = 0.1. 

If we solve for v using equation (2.19)) set u = a d ,  h = ah’ and then 
drop the prime notation, we find that 

1 S E  1 3 1 - i h  
a [ {( 1 - + u2}3/2 

- _  v =-84m 
4 (( 1 - iA)2 + u2)SIz ’ 

- 1  1 1 - 2 2  
= &aJm 

and 
t = $ah-v, c = kau, (3.7), (3.8) 

7 = x + ~ ~ o ~ / 1 6 .  (3.9) 
The motion of the instantaneous shoreline, or zero depth position, is 
obtained by setting o = 0, and is given by 

8 E  5 x 3  - 

a (1 +h2)4’ 
=-- (3.10) 

(1 + 3 x 2 -  2x4), (3.11) x =  - { 7 , 2 f E -  ___ 

t = iaX-v, c = 0. (3.12), ( 3 . 1 3 )  

€ 

( 1  + h2)3 
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The maximum penetration distance attained by the climbing wave 
occurs when the coastline velocity is zero, i.e. for h2 = 5, and is given by 
x,,,,, = 1.157~. That is, the water level, if depressed a depth E ~ Z ~  at the 
shoreline and then released, will rise to a height lS(yo higher than the 
original sea level. Figures 5, 6 and 7 present a time history of the action, 
and figure 8 is a plot of the position and velocity of the instantaneous 

I I I I 

- 1.0 

E =.2 

I I I I 

I I I I 

€ =  2 
t = 3.2 

L 

I I I I I I I I 

I I I I I I 
- 5 - 4 - 3 -2 -.I x I .2 . 3 - 5  - 4  -.3 -2 -.I x . I  .2 .3 

Figure 5. Time history of the wave-form of equation (3.1) for E = 0.2, near the 
coastline. 

shoreline for the specific wave shape E = 0.1. It is seen that the instantaneous 
shoreline rises above the mean sea level and then slowly settles back to  it. 
There are no continued oscillations about this position and the waves 
do not break provided E is sufficiently small, namely E < 0.23. 
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Figure 6. Time history of the wave-form of equation (3.1) for E = 0.2, far from the 
coastline. 

r] = E at x = - 1. In addition all have zero slope at the origin. The quantity 
w 2  evaluated at h = 0 is found to be 

(3.16) 
and from Watson (1944, $13.3) we find that 

f ( u )  = Zeezp2(2uze-u1~ - ~ ~ p e - ~ ' P )  ; 
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Figure 7. ‘l’ime history of the wave-form of equation (3.1), E = 0.2, in thc neiyhbour- 
hood of the beach. 
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If wc set x = i ~ p - ' ~ ,  then the complete solution is 

v = - 4 ~ e "  ~ o - ~ J , ( 2 p l  'bz)sin(2p1 2Ax)e-z'( 1 - 2.9 + iz*) dz ,  

G. F. Currier und H.  P.  Greenspan 

cc 

(3.18) 
0 

??/€ - € =  0 

I 1 I I I 

- € = . I  

1 I I I 

- € =  5 

I I I 



Water waves offinite amplitude on a sloping heuch 109 

If we restrict ourselves to a discussion of the motion of the shoreline, 
set A’ = 2p1/zA, u’ = 2p147 and afterwards drop the prime notation, then 
the equations of motion of the shoreline can be written as 

= (?-rp)1ke2 df(A)/dA, (3.23) 
(3.24) 

c = 0, x = -v2/16+~e2n112f(h)/4,  (3.25),  (3.26) 
t = @p-1/2 - (np)1”%e2 df(h)/dA 

where 

(3.27) 

and 

(3.29) 

Figure 10. A plot of the functions 16f and 16f, zts A. 

The functions 16j, 16f, are shown in figure 10 ; asymptotically 16f N - 32/h2, 
16fn N 64/A, so that ZI - 4 ( ? - r g ~ ) ~ / ~ c e ~ / h ~ .  The coastline motion is such that 
it first rises to its maximum height, falls back below its initial position, and 
finally returns, very slowly, to the original mean sea level. There are no 
continued oscillations about the mean sea level. The maximum penetration 
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distance occurs when v = 0, for h = 2.41 and is found to be xmax = 1.451~. 
The maximum height attained is 45% greater than the maximum initial 
wave height. The coastline velocity is again zero at h = 4.835, which implies 
that the lowest depth reached is x,,,~~ = -0.636~. The shoreline motion 
for the particular wave shapes E = 0.1 and E = 0-5 are shown in figures 11 
and 12. 

.I60 

.120 

.08 

.04 

0 

:04 

-.00 

-.I2 

€ = . I  

1 
4 5 6 7 t  

Figure 11. Coastline position and velocity PIS time for the exponential wave 
E = 0.1 of equation (3.15). 

4. CONCLUSION 
Thus far we have shown that there are progressing waves of a com- 

pressive nature (positive amplitude) which do not break as they climb a 
sloping beach. No general criteria have been found which enable us to 
determine when a given wave will break, although the magnitude of E 

and hence the initial wave shape are of fundamental importance. The 
wave-forms we have considered all had continuous derivatives, the first 
derivative being zero, initially, at the coastline. Such waves do not break 
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€ =  5 
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Figure 12. Coastline position and velocity 7;'s time for the exponential wave 
E = 0.5 of equation (3.15). 

for sufficiently small E .  In  a subsequent paper, it will be shown that all 
compressive waves (waves of positive amplitude) propagating into 
quiescent water towards the beach with a discontinuity in first derivative 
necessarily break before reaching the coastline. 
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